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ABSTRACT

FREQUENCY-DOMAIN SYSTEM IDENTIFICATION OF F-16
LONGITUDINAL DYNAMICS

Ergazi, Ege

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. İlkay Yavrucuk

Co-Supervisor: Dr. Gönenç Gürsoy

March 2022, 103 pages

The longitudinal dynamics of F-16 aircraft in a level trim, unaccelerated flight are

identified using frequency-domain system identification techniques. The nonlinear

system is excited by sine sweep elevator input, and angle of attack and pitch rate

responses are collected. Detrending and windowing are applied to time-domain data

and are converted to the frequency-domain by applying Fast Fourier Transform (FFT).

The smooth spectral estimates are found from the transformed data, allowing fre-

quency responses and coherence to be calculated. Under the guidance of coherence,

transfer functions are estimated to the frequency response data. Then, nondimen-

sional derivatives are extracted from these identified transfer functions. Finally, the

identified model is verified in the time domain.

Keywords: frequency-domain system identification, fighter aircraft, transfer function

modelling, frequency-response estimation, short-period approximation, parameter es-

timation
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ÖZ

F-16 BOYLAMSAL DİNAMİKLERİNİN FREKANS UZAYINDA SİSTEM
TANIMLAMASI

Ergazi, Ege

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İlkay Yavrucuk

Ortak Tez Yöneticisi: Dr. Gönenç Gürsoy

Mart 2022 , 103 sayfa

Denge halindeki F-16 hava aracının boylamsal dinamiklerinin frekans uzayı yöntem-

leri kullanılarak sistem tanımlaması yapılmıştır. Doğrusal olmayan sistem irtifa dü-

menine verilen sinüs tarama girdisiyle uyarılarak hücum açısı ve yunuslama momenti

cevapları toplanmıştır. Zaman uzayındaki veriler yönsemeyi giderme ve pencereleme

teknikleri uygulandıktan sonra hızlı Fourier dönüşümü (FFT) uygulanarak frekans

uzayına çevrilmiştir. Dönüştürülmüş verilerden pürüzsüz spektral tahminler elde edil-

mesiyle birlikte frekans cevapları ve uyumluluk değerleri hesaplanmıştır. Uyumluluk

değerleri rehberliğinde, frekans cevaplarına uygun aktarma fonksiyonları tahmin edil-

miştir. Tanımlanmış aktarma fonksiyonlarından boyutsuz aerodinamik türevler çekil-

miştir. Son olarak, zaman uzayında tanımlanmış sistemin doğrulaması yapılmıştır.

Anahtar Kelimeler: Frekans uzayında sistem tanımlaması, savaş uçağı, transfer fonk-

siyon modelleme, frekans cevabı tahmini, kısa-periyot yaklaşımı, parametre tahmini
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Şimşek, who introduced system identification during my internship.

Thank you a million times from the bottom of my heart, my colleague, Metin Kuş, for
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Building reliable mathematical models that represent real-life dynamics is one of the

most fundamental and sometimes challenging engineering applications. Mathemat-

ical models are a set of mathematical equations in which the relationship between

inputs and outputs of a physical system is embedded. Usually, the structure of the

mathematical models is based upon physical laws and the model parameters which

characterise the system are obtained from observations or experiments [10].

"System identification is the art and science of building mathematical models of dy-

namic systems from observed input–output data. It can be seen as the interface be-

tween the real world of applications and the mathematical world of control theory and

model abstractions."[11]. An example of an input-output system is an aircraft, and

mathematical models that represent its dynamics can be obtained via system identifi-

cation techniques. Aircraft system identification is an efficient and powerful process

to extract an accurate aircraft model based on the measured response to specific con-

trol inputs.

Extraction of such mathematical models by system identification also helps to

• Understand the cause–effect relationship that underlies a physical phenomenon,

• Investigate system performance and characteristics,

• Verify wind-tunnel and analytical predictions,

• Develop high-fidelity aerodynamic databases for flight simulators,

1



• Support flight envelope expansion during prototype testing,

• Derive high-fidelity and high-bandwidth models for in-flight simulators,

• Design flight control laws, including stability augmentation systems,

• Analyse handling qualities specification compliance [4].

Application of system identification process can be carried out in both domains, time-

domain or frequency-domain. While numerous works are related to time-domain

methodologies in the literature, such as [4, 12], frequency-domain methods are em-

ployed in this study. The frequency-domain analysis offers particular advantages,

such as holding physical insight of frequency content, direct applicability to con-

trol system design methods and flying qualities modelling, handling the noisy data

and lower dimensionality for model parameter estimation. In addition, unlike time-

domain methods, frequency-domain methods are risk-free of numerical divergence

as integration is not required [13, 14]. On the other hand, frequency-domain meth-

ods have their drawbacks, too. For instance, transforming time-domain data to the

frequency-domain is likely to suffer from leakage errors. In other words, noise-free

time-domain data may yield noisy frequency response function measurements [15].

The solutions for such difficulties are already available in the literature broadly [9, 16]

and are easy to implement, as done in this thesis.

Frequency-domain methods based on spectral estimation [17, 18], output error [19,

20], and equation error [19, 21] have been applied to flight-test data for aircraft sys-

tem identification. Spectral estimation covers frequency response estimation, which

is performed in this study. Frequency response is the ratio of the response (e.g.,

pitch rate) per unit of control input (e.g., elevator) over a frequency range. Fre-

quency response is obtained by applying Fourier transform and windowing meth-

ods to flight-test data in the time domain. Then, a parametric model to estimated

frequency-response model based on empirical data is fitted where parameters, such

as stability and control derivatives, can be extracted [17]. The main steps of identify-

ing a dynamic aircraft model can be summarised as follows:

2



• Step 1: Apply frequency sweeps to single inputs

• Step 2: Estimate frequency responses using spectral techniques

• Step 3: Identify model parameters by fitting a postulated model to Bode plots

using nonlinear optimisation. [22]

The product of the system identification in the frequency-domain is a describing func-

tion. Describing functions can be defined as linear approximations that best represent

the nonlinear responses. Therefore, since the product is an approximation, verifying

it in the time domain is essential after identifying the model using frequency-domain

techniques. The verification can be done by exciting the system again with differ-

ent inputs such as steps or doublets. Most of the time, the identified models accu-

rately predict movements with high amplitude, which makes them more than small-

perturbation models, and the power of this method comes from this. Identifying the

models at a couple of conditions with a common model structure might be suffi-

cient to mimic the existing system for flight-control design. Combining the identified

models with physics-based simulations can yield the high-fidelity full-flight envelope

predictions needed for flight control and handling-qualities applications [17].

1.2 Related Work

The first paragraph of this section is about the early history of system identification

and is adapted from [4] and [17]. Recognising the importance of obtaining aircraft pa-

rameters from flight records as early as the 1920s, the works in this field grew steadily

up to the fifties. In 1945, Cornell Aeronautical Laboratory conducted frequency-

response identification based on flight-test data, the earliest reported research in this

field. Another significant research about dynamic stability and control during this

early period is available in [23], and Greenberg [24] surveyed methods in 1951 re-

garding the determination of aerodynamic derivatives from dynamic flight data. Yet

another essential work done in the early fifties belongs to Shinbrot [25], who had in-

troduced the response curve fitting. This is an equivalent approach to the output-error

method used nowadays. However, at the time being, Shinbrot’s work was found im-

practicable due to the inadequacy of the required digital computational power. To sum
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up the techniques of the 1940s to early 1960s, they mainly were frequency response

methods. Since only a few coefficients or only simple motions can be identified due

to limited estimation capability, frequency response methods also suffered inadequate

computational power.

Despite being computationally demanding, frequency-domain methods dominated

the theory and system identification practice in the control engineering field until the

sixties. From the end of the sixties, due to the increased interest in time-domain meth-

ods, the identification in control literature is mainly shifted to time-domain methods

in the eighties. On the other hand, significantly improved computing capabilities in

the sixties and the FFT algorithm’s development led to great success in frequency-

response identification, while the fundamental system identification theory remained

essentially unchanged [17, 26].

Åström and Bohlin [27] the implemented maximum-likelihood method on a digital

computer and applied it to an industrial plant represented by difference equations in

1965. This can be considered the start of modern system identification, according

to Jategonkar [4]. Klein [28] also studied the same method in the frequency domain

later, followed by many flight-vehicle programs, including the X-31 fixed wing ap-

plication [29]. In addition, the roots of the transfer function fitting algorithm used in

this work which is presented in[30], belong to this era.

Coming to the seventies, Twisdale and Ashurst [31] developed early comprehensive

work in frequency-response analysis for system identification. Having many applica-

tions on, such as simulators, manned-powered aircraft and research aircraft, Systems

Technology, Inc. (STI) was the pioneer in the frequency-response aircraft system

identification using prescribed frequency-sweep inputs. Concordantly, lower-order

transfer-function modelling gained momentum with the development of an updated

handling qualities specification for military fixed-wing aircraft [32], as stated in [17].

Since the eighties, many works have contributed to the understanding and develop-

ment of frequency-domain methods in system identification. Practical insights on

dealing with non-periodic data and the utilisation of frequency domain data to esti-

mate continuous-time models are the most important ones, according to Ljung [33].

More about modern practical aspects can be found in Morelli and Grauer’s work [14].
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For many years, various authors have worked on similar applications to the system

identification procedure followed in this study, as given in the references [18, 22, 34,

35].

Finally, having solid theory and countless applications in many fields, system iden-

tification in the aviation industry has become easier to apply with the help of dedi-

cated software tools such as SIDPAC (System IDentification Programs for AirCraft),

CIFER(Comprehensive Identification from Frequency Responses) and FITLAB.

1.3 Thesis Objective and Outline

This chapter intends to introduce the system identification concept with a brief history

and highlight the motivation by clarifying the goal of this work. The ultimate goal

of this thesis is to identify the short-period mode of F-16 aircraft using frequency-

domain methods. The system identification procedure explained by Tischler and

Remple [17] is utilised to reach this goal. The design of the thesis is composed of

two main parts. First, the aircraft model and the method are introduced, and then the

application is given in detail with the results.

Chapter 2 is dedicated to the aircraft model and the behaviour of the aerodynamic

database. General specifications of F-16, including the actuators, are presented. Then,

the details about the aerodynamic database are introduced, and observations on bare-

airframe dynamics are shared. Having intuition about bare-airframe dynamics prior

to identification is helpful to understand the problem and is essential for successful

identification. The entire procedure followed in this study is explained in detail from

start to finish in Chapter 3. The chapter begins with input design and elaborates on

the post-processing of the collected time history. The frequency-response and transfer

function estimations are presented with the Fourier transform. Then, from the iden-

tified transfer functions, parameter estimation is performed. The identified model is

tested in the time domain as the last step. The application of the procedure explained

in Chapter 3 is given in Chapter 4. It is repeated in the specified flight envelope,

and consistent results are obtained. Concluding remarks are made in Chapter 5, and

possible ways to improve the identification method and algorithm are discussed.
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CHAPTER 2

AIRCRAFT MODEL

2.1 Aircraft and Actuator Model Specifications

The nonlinear F-16 simulation model in MATLAB - Simulink environment provided

by [2] is used in this study. Specifications of the F-16 aircraft used in the simulation

are given in Table 2.1. The aerodynamic database of the simulation is the aerody-

namic data obtained from the wind tunnel. 16% scale model of the F-16 with the

landing gear retracted and without external stores is used in the wind tunnel test. The

experiments are conducted for Mach numbers lower than 0.6 and out of ground effect

[1, 3]. The same model of F-16 is also used by Morelli and Grauer [14] to demonstrate

some practical aspects of frequency-domain system identification techniques.

Table 2.1: F-16 Aircraft Model Specifications [1]

Property Value

Weight 91188 N

Ix 12875 kg m2

Iy 75674 kg m2

Iz 85552 kg m2

Ixz 1331 kg m2

Wing Span (b) 9.144 m

Wing Area (S) 87.87 m2

Wing Mean Aerodynamic Chord (c) 3.45 m

Reference Center-of-Gravity Location 0.35 c

Center-of-Gravity Location 0.30 c
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The model includes elevator, thrust, aileron, rudder and LEFs (optional) as controls,

and the actuator dynamics are added with position and rate limits. Their specifications

are presented in Table 2.2. Actuators of elevators, ailerons and rudders are modelled

as 0.0495 seconds of first-order lags, while the lag of the LEF actuators is 0.136

seconds, and the thrust actuator has a time constant of 1 second.

Table 2.2: F-16 Model Actuator Specifications [2]

Control Lower Limit Upper Limit Rate Limit

Thrust 4450 N 84515 N 44480 N/s

Elevator -25 deg 25 deg ± 60 deg/s

Aileron -21.5 deg 21.5 deg ± 80 deg/s

Rudder -30 deg 30 deg ± 120 deg/s

LEF 0 25 ± 25 deg/s

The model offers users "high-fidelity" and "low-fidelity" options depending on how

LEFs are implemented in the model. LEFs are moving actively in the high-fidelity

model, and actuator dynamics are also present. LEF movement is scheduled with

respect to the angle of attack and Mach number, but according to Stevens, Lewis

and Johson [36], the Mach-dependent variation of LEFs in this database is small.

Thus, they rearranged the database and reduced the dimension of look-up tables first

by removing the Mach dependency from LEFs and assuming they depend on alpha

only. In addition, LEFs respond to changes in alpha and Mach very rapidly, so their

actuator dynamics are also neglected. Then, they merged all of the independent LEF

data tables into the rest of the tabular aerodynamic data. Therefore, the effect of LEF

deflection is present in the reduced database, excluding the actuator dynamics.

Low-fidelity option is preferred for this study since the active movement of LEFs

together with the angle of attack causes correlation problems during identification.

They interfere with the short-period mode to be identified given in 3.1, which in-

cludes only elevators as the control surfaces. Therefore LEF motion will distort the

identification process for such a case, as being scheduled with the angle of attack can

lead to a correlation with the elevator. Hence, the "low-fidelity" database where the

effect of LEFs is already embedded is preferred to eliminate the correlation problem.
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As a result, the response of angle of attack and pitch rate to elevator input will also

inherently include LEF effects.

Figure 2.1: Simulink Model View

Moving to the control’s sign convention, the positive deflection of the control surfaces

illustrated in Figure 2.2 creates a negative moment along the body axes. For instance,

trailing edge down deflection for the elevator is positive deflection, which reduces the

body pitch rate q. Thrust acts along the x-body axis, and the increase of thrust leads

to acceleration in the positive x-body direction.

Figure 2.2: The positive control deflections for the control surfaces [2]

Like real flight test data, the simulation sampling time is adjusted to 100 Hz, and the

RK4 solver, the classic Runge-Kutta, is used. Gaussian white noise is introduced to

collected time responses artificially.
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2.2 Equations of Motion

The nonlinear force and moment equations in the body-axes system are used to sim-

ulate the rigid-body motions of the aircraft with six degrees of freedom. The set of

equations is given in Equation 2.1 [1].

Forces :

u̇ = rv − qw − g sinθ +
q̄S

m
CX,t +

T

m

v̇ = pw − ru− g cosθ sinϕ+
q̄S

m
CY,t

ẇ = qu− pv − g cosθ cosϕ+
q̄S

m
CZ,t

Moments :

ṗ =
IY − IZ
IX

qr +
IXZ

IX
(ṙ + pq) +

q̄Sb

IX
Cl,t

q̇ =
IZ − IX
IY

pr +
IXZ

IY
(r2 − p2) +

q̄Sc̄

IY
Cm,t −He r

ṙ =
IX − IX
IZ

pq +
IXZ

IZ
(ṗ− qr) +

q̄Sb

IZ
Cn,t −He q

(2.1)

where u, v, w are components of the aircraft’s translational velocity along X, Y and Z

body axes and p, q, r are angular velocity components in the body frame. ϕ and θ are

roll angle and pitch angle. g is the gravitational acceleration, and m is the mass of the

aircraft. T is total instantaneous engine thrust, andHe is the angular momentum of the

engine. Finally, the total force and moment coefficients in the body frame are CX,t,

CY,t, CZ,t and Cl,t, Cm,t, Cn,t. For the high-fidelity model, longitudinal dynamics are

given in Equations 2.2 and 2.3 [1].
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CX,t = CX(α, β, δe) + ∆CX,LEF

(
1− δLEF

25

)
+

c̄q

2V

[
CXq(α) + ∆CXq,LEF

(α)

(
1− δLEF

25

)]

CZ,t = CZ(α, β, δe) + ∆CZ,LEF

(
1− δLEF

25

)
+

c̄q

2V

[
CZq(α) + ∆CZq,LEF

(α)

(
1− δLEF

25

)]

Cm,t = Cm(α, β, δe) ηδe(δe) + CZ,t(xcg,ref − xcg) + ∆Cm(α) + ∆Cm,ds(α, δe)

+ ∆Cm,LEF

(
1− δLEF

25

)
+

c̄q

2V

[
Cmq(α) + ∆Cmq,LEF

(α)

(
1− δLEF

25

)]
(2.2)

where
∆CX,LEF

= CX,LEF
(α, β)− CX (α, β, δe = 0◦)

∆CZ,LEF
= CZ,LEF

(α, β)− CZ (α, β, δe = 0◦)

∆Cm,LEF
= Cm,LEF

(α, β)− Cm (α, β, δe = 0◦)

(2.3)

The contribution of CZ,t to Cm,t in Equation 2.2 is non-zero since the aircraft’s centre

of gravity is not at the reference in this study.

2.3 Aerodynamic Database

The aerodynamic database is available in non-dimensional form as look-up tables

in the NASA report [1] for the high-fidelity model. This database is simplified by

blending the static effect of LEFs into the databases as presented in [36]. This re-

duced database, called as the low-fidelity model, is used in the model. Also, in [3],

Morelli approximates the non-dimensional aerodynamic force and moment coeffi-

cients belonging to the same low-fidelity database by nonlinear polynomials. The

aerodynamic database embedded in the nonlinear Simulink model is available within

the envelope given in Table 2.3.
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Table 2.3: Envelope of the Low-Fidelity Model [2]

Variable Minimum Maximum

Altitude [ft] 5 000 40 000

Velocity [ft/s] 300 900

Angle of Attack [deg] -10 45

Angle of Sideslip [deg] -30 30

The force and moment equations for the high-fidelity model given in Equation 2.2 are

simplified by removing the individual terms depending on LEFs as they are already

embedded in the coefficients, and deep stall characteristics, which is achieved with

active LEFs. The elevator efficiency factor, ηδe , is taken as one. Then, the total body

X-axis force coefficient (CX,t), total body Z-axis force coefficient (CZ,t) and total

body pitching-moment coefficient (Cm,t) for the low-fidelity model are obtained as

follows:

CX,t = CX(α, β, δe) +
c̄

2V
q CXq(α) (2.4)

CZ,t = CZ(α, β, δe) +
c̄

2V
q CZq(α) (2.5)

Cm,t = Cm(α, β, δe) +
c̄

2V
q CMq(α) + CZ,t(xcg,ref − xcg) (2.6)

As seen in Equation 2.6, the non-dimensional pitch-moment derivative with respect

to the angle of attack (Cmα̇
) is not explicitly written because it is already included

in the Cmq due to how the data is collected in the wind tunnel. In addition, as there

is complete decoupling between longitudinal and lateral directions [2], the angle of

sideslip dependency in Equations 2.4, 2.5 and 2.6 is neglected.

Morelli [3] also approximated the aerodynamic database for the low-fidelity model

by nonlinear polynomials as follows:

12



CZ(α, β, δe) =
(
f0 + f1α + f2α

2 + f3α
3 + f4α

4
) (

1− β2
)
+ f5δe (2.7)

Cm(α, δe) = m0+m1α+m2δe+m3αδe+m4δe
2+m5α

2δe+m6δe
3+m7αδe

2 (2.8)

CZq(α) = g0 + g1α + g2α
2 + g3α

3 + g4α
4 (2.9)

Cmq(α) = n0 + n1α + n2α
2 + n3α

3 + n4α
4 + n5α

5 (2.10)

where

Figure 2.3: Polynomial Coefficients [3]

To be consistent with the decoupling assumption, the angle of sideslip dependency in

the Equation 2.7 are also neglected.

Since bare-airframe dynamics are already stable, controller activation to stabilise the

aircraft is not necessary. If SCAS is engaged, its effects on the identification should

be taken into account as it may suppress the low-frequency excitation. Provisions for

SCAS-on identification and guidance on open-loop identification of unstable plants

are available in [17]. Furthermore, no controller is working off-axis to reduce the

unwanted off-axis effects neither because the longitudinal and lateral dynamics of the

low-fidelity F-16 model are already decoupled within the flight envelope covered in

this study. The main results of this study are obtained from the open-loop responses,

but in Section 4.3.2, the SCAS-on case is also studied where the bare-airframe iden-

tification is performed using closed-loop data.
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CHAPTER 3

PROCEDURE

To identify the short-period mode of the aircraft, the system identification procedure

suggested in Tischler and Remple’s book [17] is followed, and the entire work is

performed in MATLAB and Simulink environment.

The short-period approximation given in [36] is considered, and the dynamics are

simplified by neglecting the axis force derivative with respect to the angle of attack

rate Zα̇ since it is usually small compared to VT . Furthermore, the effect Mα̇ is

included in Mq, as stated in the previous chapter. Finally, since α is a small angle, it

can be said that the difference between the lift axis and the z-body axis is also small.

Accordingly, it is assumed that CLα = −CZα , CLq = −CZq and CLδe
= −CZδe

.

Based on these assumptions and simplifications, the final short-period approximation

in state-space form is shown in 3.1. The dimensional derivatives are taken in SI units,

and control deflections are in degrees.α̇
q̇

 =

Zα/VTe 1 + Zq/VTe

Mα Mq


α
q

+

Zδe/VTe

Mδe

[
δe

]
(3.1)

In this short-period approximation, the pure relationship between elevator, α and q

without the interference of LEFs is observed. Therefore, the low-fidelity model is

used to remove the correlation effects of LEFs, as stated in Chapter 2. Hence, the

quality of the identification process is not degraded by the correlation of multiple

control surfaces, and the identified model will represent what is present in the low-

fidelity aerodynamic database.
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The procedure followed can be summarised as follows:

• Excitation of the system (F-16 nonlinear model) by elevator sweep inputs

• Collection of the responses and detrending of time-history data

• Windowing of the detrended time-domain data

• Calculation of frequency-response and construction of coherence function

• Transfer function estimation and parameter estimation

• Verification of the identified transfer function in the time domain by using dis-

similar inputs

3.1 Input Design and Collection of Time-History Data

The success of the identification highly depends on the sufficient excitement of the

system, and this can be easily ensured by giving proper inputs to the system. Different

inputs excite systems differently, depending on their spectral content, as shown in

Figure 3.1.

Figure 3.1: Frequency-Domain Comparison of Standard Input Signals [4]

Input plays a crucial role in sufficient excitation of the mode of interest. Morelli and

Grauer [14] note that since frequency-response shows the steady-state response of a

linear time-invariant dynamic system to sinusoidal inputs, it also requires steady-state
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data. Therefore, transient content in the responses will bias the frequency-response

estimate. To prevent the system from being affected by the transient effects, it can

be excited with a single sine wave at a time, and the very last portion of the data can

be used. Another solution is to use frequency-sweep inputs for excitation. Increasing

the frequency at a sufficiently slow rate, the effects of transients become negligible

compared to steady-state response, and steady-state response of the system at multi-

ple frequencies can be obtained in a single run. The design guides presented in [17]

also mention that the recommended input for system identification in the frequency

domain is a frequency sweep. The frequency sweep refers to a class of control in-

puts with a quasi-sinusoidal shape of increasing frequency. Having fairly distributed

spectral excitation over the desired frequency range makes frequency sweep inputs

suitable for frequency-response identification, and frequency sweeps are robust to

uncertainties. They can be given by pilots or might be computer-generated. In this

application, computer-generated sweeps are used with suggested parameters in [17].

A sweep input δsweep can be easily implemented as a sine wave with amplitude A,

which is typically 10% of the maximum deflection limits, and angular frequency ω

where ω is a function of time, t:

δsweep = Asin(ω(t) t) (3.2)

For an optimum input design, the argument of the sin term in Equation 3.2 is replaced

with a tuned function. The resultant sweep input becomes as follows:

δsweep = Asin

[∫ Trec

0

[
ωmin + C2

(
e

C1t
Trec − 1

)
(ωmax − ωmin)

]
dt

]
(3.3)

The values C1 = 4.0 and C2 = 0.0187 in Equation 3.3, which are taken from [17], are

experience-based numbers and suggested typical values for other parameters are:

Trec = 90s ωmin = 0.3 rad/s ωmax = 12 rad/s (3.4)

In addition to careful design of sweep input, there are other essential aspects to con-

sider to excite the system sufficiently. First, the flight test should be started and ended

in trim condition, and trim should be maintained for at least three seconds. Second,

the deviation of the responses from the trim point should be as symmetrical as pos-

sible. Moreover, responses should be at significant amplitude so that noise effects in
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the recorded data are kept minimum. The acceptable noise level can be quantified as

a 10% magnitude of bias at most. Therefore, for angular attitudes and angular rates,

± 10 degrees or degrees per second is the suggested amplitude to prevent noise con-

tamination. At the same time, the responses should not be extremely high so that the

aircraft does not depart from the linear region and the initial trim condition [17].

Moving to the application part, the aircraft is trimmed at steady-wings level flight

first, and sine sweep input in Equation 3.3 is fed to the elevator command (δec).

Then, the actual elevator position (δe), angle of attack (α) and pitch rate (q) responses

of the aircraft are collected. The block diagram is presented in Figure 3.2. The

elevator sweep command and the resultant elevator deflection from trim are given in

Figure 3.3. The α and q responses to elevator actuator command input are shown in

Figure 3.4.

Figure 3.2: Block Diagram

Figure 3.3: Sweep Input to Elevator Command and Actual Elevator Deflection
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Figure 3.4: Outputs

After completing the collection of data, the amount of nonlinearity in the time-history

data is examined, and response amplitudes are checked visually such that they are

not extremely high or low. If the time-history plots seem unsatisfactory, excitation

amplitude is readjusted, and the same procedure is repeated. As obtaining good re-

sults, detrending is applied to the time-history data. Detrending means removing

low-frequency signal components with relatively high amplitude like constant part

(bias) and the component related with time linearly (the linear trend or drift). De-

trending is performed on time-domain data, and its application is essential before

converting it to the frequency domain. Detrending aims to restrain the leakage due

to low-frequency components at considerably high amplitudes, which can pollute the

frequency-domain data at the lower frequencies [14]. Therefore, trim values of the

input and output signals are removed before the transformation, within the scope of

the detrending process.
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3.2 Transformation of Time-Domain Data to the Frequency Domain

A linear system’s response to a sine wave will also be a sine wave with a different

amplitude and phase shift. Frequency-response is defined as the steady-state response

of a system to sinusoidal inputs. One of the advantages of the frequency-response ap-

proach is that the experimental data can be used to obtain frequency-response without

knowing the mathematical model of the physical system [37] as in this application.

Frequency-response is constructed by data points and shows the ratio of the angle of

attack and pitch rate responses per unit of control input, δe, as a function of the con-

trol input frequency. It is obtained by transforming observed time-domain data into

frequency-domain by applying the Fourier transform [17].

3.2.1 Fourier Transform

The Fourier transform takes non-periodic signals in the time domain and converts

them into equivalent frequency-based signals [17]. The Fourier transform of a time-

based signal x(t) is given as:

X(ω) =

∫ ∞

−∞
x(t) e−jωt dt (3.5)

The frequency-response function H(ω) is mathematically defined as the ratio of the

Fourier transform of output, Y (ω), to the input transform, X(ω):

H(ω) =
Y (ω)

X(ω)
(3.6)

The transformation in Equation 3.5 requires a continuous signal x(t) with an infinite

extent, unlike actual flight-test data. Signals recorded in flight tests have a certain

sampling time, making them discrete signals, and they only last for a limited amount

of time. Therefore, Discrete Fourier Transform DFT is suitable for flight test data, as

shown in Figure 3.5.
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Figure 3.5: Fourier Transforms Broken Down by time-domain Properties [5]

The Discrete Fourier Transform of a signal x(t) is denoted as X(f) at discrete fre-

quencies fk, from a finite record of sampled data and is given in [17] as:

X(fk) = X(k ∆f) = ∆t
N−1∑
n=0

xn e
[−j 2π (kn)]/N (3.7)

where

X(f) = Fourier cofficients, for k = 0, 1, 2, ..., N − 1

xn = x(n∆t) = time-domain data record, for n = 0, 1, 2, ..., N − 1

∆t = time increment

∆f = 1/N∆t = frequency resolution

N = number of discrete frequency points

X(f) = Fourier cofficients, for k = 0, 1, 2, ..., N − 1

In the DFT calculation equation 3.7, the number of discrete frequency points in the

identified Fourier transform X(f), N , equals to the number of discrete time points

in the time-history data record xn. The frequency points are distributed evenly from

fmin = ∆f to the sample rate fs = 1/∆t.
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In this study, the application of DFT is performed by using FFT, which is a computa-

tionally more efficient algorithm.

The computational advantages of the FFT have a significant impact on the application

of the spectral methods, although the basic theory is essentially unchanged. Cooley-

Tukey (1965) and Bendat and Piersol (1971) are early examples of FFT aplications.

Bendat and Piersol (1971), reduce the estimates’ variance by dividing the data into

segments. Then, FFT is applied to each data segment separately, and the average

of the resulting spectral estimates is taken. However, splitting time-domain data into

segments is not sufficient to compensate for spectral leakage issues like bias problems

(side lobes). The mitigation of these issues is realised by tapering each segment before

the transformation. Weighting each time segment by multiplying them with a tapering

function, which is also a function of time, is called windowing [26].

3.2.2 Windowing

Windowing functions are weighting functions multiplied with time-domain data to

reduce the spectral leakages due to finite observation intervals [38]. Before explaining

the spectral leakage, the periodicity of the observed signal will be introduced first.

Signals may be periodic or non-periodic, as shown in Figure 3.6. As seen in Figure

3.6, when periodic signals are added from end to end, they will form a continuous

wave identical to the original signal.On the other hand, the same addition process

will produce a discontinuous signal when applied to non-periodic signals, and the

frequency content of the original signal will be lost due to discontinuity. The loss

of accuracy in the frequency domain due to discontinuity which stems from non-

periodicity, is illustrated in Figure 3.7.
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Figure 3.6: Periodic and Non-Periodic Signals [6]
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Figure 3.7: Spectral leakage [6]

The spectral leakages occur because the Fourier transform theoretically requires a

signal to be periodic. In other words, the captured signal should be exactly an integer

number of its cycle. If not, spectral leakage is inevitable because of the discontinuity.

Windowing is applied to minimise the leakage due to the non-periodicity of the ob-

served data. However, windowing modifies the original time signal and introduces its

own errors to the estimation [9]. The transformation from the time domain to the fre-

quency domain can be directly done by taking FFT without applying any windowing.

"Without applying any windowing" or "doing nothing" on the collected time-history

data imply that a rectangular window (Boxcar window or Dirichlet window) is ap-

plied to the time-domain data. A rectangular window multiplies the observed data

by one and the unobserved data by zero. The rectangular window and its impact on

leakage are shown in Figure 3.8 for a sine wave with 10 Hz angular velocity. Since

the observed portion of the data is non-periodic, which is usually the case for real-life

applications, spectral leakage occurred. This transformation yields the rough estimate

of the spectral functions defined in Section 3.2.3, but the quality of the estimation may

be degraded by leakage.
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Figure 3.8: Rectangular Window [7]

The leakage due to the non-periodic nature of the observed data is evident in Fig-

ure 3.8, and the rectangular window is more leakage-prone than other window types.

There are sudden jumps at the edges of the rectangular window when the signal is

non-periodic, which causes dramatic discontinuities and, therefore, leakage. To mit-

igate leakage, there are two ways. The signal should be periodic, which is rarely the

case in real life, or the severe discontinuities at the window edges should be softened.

The gradual change from zero to one or one to zero is possible by applying a tapered

window rather than a rectangular window [14]. The transition from zero to one or

one to zero at the window edges is much softer when a tapered window is applied, as

in Figure 3.9.

For example, consider a signal y(t) composed of sine waves with the angular velocity

of 1 Hz and 8 Hz with magnitudes of 4 and 3, respectively. Thus, y(t) can be written

as:

y(t) = 4sin(2πt) + 3sin(2π8t) (3.8)

Assume that the signal y(t) is observed for two seconds with a sampling of 100 Hz.

Since 2 seconds is an integer multiple of the cycle of y(t), the observed signal is

periodic, and no leakage will occur regardless of what window type is selected. In

this example, the effect of the rectangular and Hanning windows is compared. The

observed data and window comparison in the time domain is shown in Figure 3.10.
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Figure 3.9: Effect of Tapered Window in Time-domain [8]

Figure 3.10: Comparison of Rectangular Window and Tapered Window in the Time

Domain
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The soft transition at the edges of the Hanning window compared to the rectangular

window is visible in Figure 3.10. The effect of this tapering function in the frequency-

domain is shown in Figure 3.11. As the observed signal is periodic, there is no leakage

in the amplitude spectrum plot, and spikes are at the correct frequencies (1 Hz and 8

Hz) with correct amplitudes. Note that, unlike the rectangular window, the Hanning

window reduces the signal amplitude by half so that the power magnitudes seem to

be half of their actual values. The halving factor comes from Equation 3.9.

Figure 3.11: Comparison of Rectangular Window and Tapered Window in the Fre-

quency Domain for Periodic Signal

It is shown that periodic data does not require tapering as accurate results with rect-

angular window can be obtained easily. Now, assume that the observation lasts not

for 2 seconds but 2.56 seconds, making the observed data non-periodic. The leakage

due to non-periodicity is shown in Figure 3.12.
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Figure 3.12: Comparison of Rectangular Window and Tapered Window in the Time

and Frequency Domains for Non-Periodic Signal

The spikes in the spectrum plot are not at the correct frequencies, and the magnitude is

inaccurate for both windows. However, the amount of lost information is minor in the

Hanning window compared to the rectangular window. This can be understood from

the amplitude at side frequencies in a rectangular window. In other words, leakage

through other frequencies is less in the Hanning window. Therefore, the nature of the

signal cannot be captured precisely if the observed data is not periodic, but a tapered

window will be beneficial to reduce the distorting effect.

The role of tapering the segments with a smooth data window (as opposed to the rect-

angular window) was already demonstrated by Bendat and Piersol [39] and by many

others, but no unique answer can be given to the question of what optimal window

is like [16]. In the literature, several tapering functions for different purposes exist,

and their suitability depends on the application. Some of the common window shapes

such as Boxcar, Hanning, flat-top, Hamming, Kaiser-Bessel, Gauss and Blackman

are given in Figure 3.13. Their comparison in detail, including frequency-domain

comparison, is available at [40].
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Figure 3.13: Different Window Shapes, time-domain View

Among the common window shapes, Hanning window, sometimes also called as

Hann window, is suggested by Tischler and Remple [17] for aircraft system iden-

tification, and they give Hanning window function as:

w (t)Hann =


1
2

(
1− cos

(
2πt
Twin

))
for 0 ≤ t ≤ Twin

0 otherwise
(3.9)

The detrended time-history record is divided into time segments with a window length

of Twin, and the data in each window is multiplied with Hanning window function

w(t)Hann before applying FFT.

Dividing time-history data into multiple window segments is essential to obtain the

smooth spectral estimates given in Equation 3.13 because smooth spectral estimates

are obtained by averaging the rough estimates for multiple data segments. Further-

more, the coherence function explained in Section3.2.5, also requires multi-windowing

since it is defined as a function of smooth spectral estimates [17]. While applying

windowing, overlap ratio of the windows is also important. If there is no overlap

between the windows, as shown in Figure 3.14, missing the information in the signal

becomes a possibility. The first plot in Figure 3.14, is the sampled signal and the
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second plot has four Hanning window segments with no overlap. The product of the

original signal with the windowing function is given in the bottom plot of Figure 3.14,

which obviously shows that the nature of the signal could not be captured. Therefore,

windowing with non-zero overlap is essential for accuracy.

Figure 3.14: Hanning data capture window without overlap [9]

Tischler and Remple [17] state that 50% overlap reduces random error significantly,

but the benefit of a higher overlap ratio comes with a computational burden. There-

fore, the trade-off between higher accuracy and an increased number of calculations

becomes necessary. According to their experience, 80% overlap is the sweet spot for

aircraft system identification. Thus, the Hanning window with 80% overlap is applied

to detrended time-domain data before taking FFT in this study.

To sum up, computing the FFT by using one rectangular window with the same length

of flight-test data is possible if rough spectral estimates have desired accuracy and

calculation of the coherence is not needed. However, in this application, overlapped

windowing with proper taper function is required because smooth spectral estimates

given in Equation 3.13 are needed for improved accuracy and to obtain coherence.
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3.2.3 Spectral Functions

The spectrum of the data x is the magnitude squared of the Fourier transform of

x. The spectrum indicates the amplitude of rhythmic activity in x as a function of

frequency [7]. Naming the DFT of input signal xt as X(f) and DFT of the output

signal yt as Y (f), rough estimate of the input autospectrum for a single flight

record T = Trec is given as [17]:

G̃xx(f) =
2

T
|X(f)|2 (3.10)

The input auto spectrum, also called the input power spectral density (PSD), is repre-

sented as Gxx and shows the distribution of the squared input x2 or excitation power

as the function of frequency f . In addition, Gxx stands for the one-sided spectral

function in this application [17]. As a side note, double-sided spectral functions are

not used since the information at negative frequencies is redundant and does not hold

any physical meaning.

Similar to Equation 3.10, the rough estimate of the output auto spectrum (output

PSD) can be shown as [17]:

G̃yy(f) =
2

T
|Y (f)|2 (3.11)

In the same fashion, the rough estimate of the cross spectrum (cross PSD) is written

as [17]:

G̃xy(f) =
2

T
[X∗(f)Y (f)] (3.12)

where ∗ stands for the complex conjugate. Unlike input and output spectrum, cross-

spectrum is a complex-valued function.
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3.2.4 Frequency-Response Estimation of Windowed Time-Domain Data

As overlapped windowing is applied to the detrended time-history data, the transfor-

mation from time-domain to frequency-domain can be executed at this stage. Smooth

estimates can be obtained as follows [17] by using the overlapped windowing tech-

nique:

Ĝxx(f) =

(
1

Unr

) nr∑
k=1

G̃xx,k(f)

Ĝyy(f) =

(
1

Unr

) nr∑
k=1

G̃yy,k(f)

Ĝxy(f) =

(
1

Unr

) nr∑
k=1

G̃xy,k(f)

(3.13)

where U is a correction factor applied to the overall spectral density magnitude be-

cause of the energy loss associated with the taper function w(t). The correction is

given as U = 0.612 =
√
3/8 for the Hanning window[39].

The frequency-response function estimation can be obtained from smooth spectral

function estimates [17]:

Ĥ1(f) =
Ĝxy(f)

Ĝxx(f)
or Ĥ2(f) =

Ĝyy(f)

Ĝyx(f)
(3.14)

Both definitions in Equation 3.14 will return the same values for noise-free cases. If

the noise effects are present, the estimates will differ, and the selection of Ĥ1(f) or

Ĥ2(f) depends on the noise source. In this work, it is known that input is noise-free,

so the frequency-repose function estimation Ĥ1(f) is employed as suggested in [17].

Noise is only present at the output channels: angle of attack and pitch rate.
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3.2.5 Coherence Function

Another essential function is coherence function estimate γ̂2xy, a product of smooth

spectral estimates and a measure of linearity of the input-output relationship. Coher-

ence function is defined as:

γ̂2xy(f) =

∣∣∣Ĝxy(f)
∣∣∣2∣∣∣Ĝxx(f)

∣∣∣ ∣∣∣Ĝyy(f)
∣∣∣ (3.15)

The coherence function γ2xy can be interpreted physically as the fraction of the output

spectrum Gyy that is linearly attributable to the input spectrum Gxx at frequency f

[39]. For the perfectly linear processes, γ2xy will be 1, the ideal value, which indicates

that all of the output spectra are attributable to all of the input spectrum. The low-

est value of γ2xy is zero, implying that the relationship is fully nonlinear. In practice,

γ2xy can never be exactly one due to several reasons. First, the noise in the measured

output signal causes contamination in the linearity of the relationship. In addition,

there are nonlinearities in the nature of the system which cannot be captured by the

frequency response and therefore, the system is approximated by a linear (first har-

monic) describing function. There also may be process noise due to unknown or

unmeasured inputs. Active controller at off-axis or gusts may be listed as some of the

potential sources of such process noise, which are uncorrelated to the measured input

[17].

A critical remark about the coherence function is that it requires averaging multi-

windowed data to make sense. If only one window section is used, the γ2xy value will

return to 1 for the entire frequency range, regardless of whether noise or nonlinear-

ities are present. This situation makes coherence to be meaningless and, therefore,

useless. Since the coherence function is a product of the averaging data along multi-

ple windows, it is written in terms of smooth spectral function estimates rather than

rough spectral function estimates [17]. If the coherence function is calculated by us-

ing the previously given equations 3.10, 3.12, and 3.11 for a single window (rough

spectral estimates, no averages), it becomes clear that its value is always one at all

frequencies.
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Providing a rapid interpretation of the frequency response identification process’s

quality makes the coherence function an essential guide. The frequency region where

the value of γ2xy is greater than 0.6 and not oscillating is accepted as a reliable region

[17].

For instance, in Figure 3.15, the coherence for the angle of attack response to elevator

input is high and is constant, starting from minimum frequency up to roughly 8 rad/s,

and it drops off quickly after this frequency. Similarly, for the pitch rate response, γ2xy
seem to be constant with high values as desired until 10 rad/s. The transfer function

estimation will be performed on the data covered by this selected frequency range.

Figure 3.15: Example Use of Coherence Function with Bode Plot
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3.3 Transfer Function Estimation to the Frequency-Response Data

By applying the steps up to this section, frequency-response is now in hand. The next

step is to estimate a transfer function that suits the frequency-response for a bounded

frequency interval. The coherence function is utilised as guidance to determine the

proper frequency range in which transfer function estimation can be done healthfully.

The mode of aircraft to be identified also gives the clue of the frequency range where

high coherence (i.e. γ2xy > 0.6) can be expected.

Furthermore, the order of transfer function, determined before the fitting process, also

affects the identification results. The selection of a proper model structure requires

various aspects to be considered. First, the ultimate application of the model has to

be unambiguous (controller design, wind tunnel test verification, ...). The frequency

range of interest and the quality of the available frequency-response data also play

a vital role in what kind of model can be identified with the data in hand. Finally,

an understanding of fundamental flight dynamics and linear systems is essential. For

instance, the dynamics of fixed-wing aircraft can be accurately represented by fourth-

order (or less) transfer function models (LOES modelling) [17]. In this application,

a transfer function of order two is a plausible choice for F-16 aircraft because the

aerodynamic database of the F-16 model does not exhibit any untypical behaviour,

which needs to be taken care of. Hence, the short-period mode is approximated with

the following transfer functions:

α

δe
=

Zδe/VTe s+ (1 + Zq/VTe)Mδe − (MqZδe/VTe)

s2 − (Zα/VTe +Mq) s+ (MqZα/VTe)− (1 + Zq/VTe)Mα

(3.16)

q

δe
=

Mδe s+ (MαZδe − ZαMδe)/VTe

s2 − (Zα/VTe +Mq) s+ (MqZα/VTe)− (1 + Zq/VTe)Mα

(3.17)

The transfer functions 3.16 and 3.17 are obtained from the short-period approx-

imation in Equation 3.1. Estimation of the second-order transfer functions to the

frequency response data is performed by using the Sanathanan and Koerner (S-K) it-

eration [30] based algorithm explained in [41]. Original S-K iterations are performed

to solve the nonlinear least-squares problem, which is the minimisation of the follow-

ing cost function J [42]:
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J =

nf∑
i=1

∣∣∣W (ωi)

(
y(ωi)−

Num(ωi)

Den(ωi)
u(ωi)

) ∣∣∣2 (3.18)

where

nf = number of frequencies

W = frequency-dependent weight function

u and y = measured input and output

Num and Den = numerator and denominator of the transfer function to be estimated

The difference between experimental frequency-response data and the estimated trans-

fer function is calculated, and its magnitude is minimised in the cost function. Since

the estimated transfer function is multiplied with the measured input and the differ-

ence between the product of these two is compared with the experimental output, the

mismatch in magnitude and phase are both taken into account in J .

Ozdemir and Gumussoy [41] enhanced the original S-K algorithm in 3.18 by ap-

plying a second set of iterations for refinement and reduction of numerical errors.

The enhanced version is employed in this study as the transfer function estimation

algorithm by using tfest command of MATLAB [42].

The normalised root mean squared error (NRMSE) in Equation 3.19 is used to

evaluate the goodness of fit.

NRMSE =
|y(ωi)− y(ωi)id|
|y(ωi)− ymean|

(3.19)

where

y = frequency-response magnitude

yid = magnitude of the transfer function to be estimated

ymean = mean of frequency-response magnitude

It is observed that the transfer function estimations with NRMSE < 10% provide

acceptable accuracy for both channels, α and q. For the estimations with NRMSE

> 10 %, the frequency range of fit is updated by considering the coherence values

until a good fit (NRMSE < 10 %) is achieved. If a good estimation is not achiev-

able by tuning the frequency range, it is suspicious that the system is properly and
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adequately excited or that the plant can be represented with a second-order transfer

function. The other possibility is that the transfer function estimation algorithm may

also fail to find a great fit due to its search method, but this was never the case in this

study. Considering the aerodynamic characteristics of the F-16, it is expected that

the second-order system should be capable of representing the short-period dynam-

ics accurately. Therefore, most likely, a poor fit is due to the poor excitation of the

system. Most of the time, when such cases are encountered, it is found that there are

two main underlying reasons. First, the nonlinear model is perturbed too much, so

the linearity is lost. Second, actuators hitting the rate limit degraded the quality of the

identification process. The remedy to such nonlinearities is the same for both cases.

The input amplitude is decreased to reduce the time spent at the rate limit and prevent

the model from diverging from the reference conditions.

The transfer function estimations to the frequency responses of the angle of attack

and pitch rate to the elevator are performed separately. However, they need to share

common denominators, as seen in equations 3.16 and 3.17. Therefore, the denom-

inator of the α / δe transfer function is taken as the common denominator. The final

identified model in state-space form is given in Equation 4.1.

The identified model is also compared with the output of CIFER software. FRESPID

and NAVFIT modules are used for this comparison. First, the same time-history data

is loaded into FRESPID and frequency-response is obtained by using the same fixed

window length, Twin. Then, the NAVFIT module estimates the transfer function to

the frequency-response data. The same frequency range with the same amount of data

points is selected for the estimation. Although this is not the suggested way of using

the software, it is helpful for comparison purposes.
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3.3.1 Parameter Estimation from Identified Transfer Function

Since the transfer functions α / δe and q / δe are written in terms of aerodynamic

derivatives, parameter estimation from the identified transfer functions can be per-

formed. Therefore, dimensional derivatives Zδe , Mδe , Mq, Zα, Mα and Zq are identi-

fied. Then, they are non-dimensionalised to make them comparable with the original

aerodynamic database of the nonlinear F-16 model. The non-dimensionalisation is

taken from the NASA report [1], consistent with the convention in [36]. The non-

dimensional derivatives are:

CZδe
=
Zδem

q̄S
Cmδe

=
MδeIy
q̄Sc̄

Cmq =
2MqIyVTe

q̄Sc̄2

CZα =
Zαm

q̄S
Cmα =

MαIy
q̄Sc̄

CZq =
2ZqmVTe

q̄Sc̄

(3.20)

where the value of q̄ is taken as the reference trim condition value. The natural fre-

quency and the damping of the short-period mode can be calculated from the identi-

fied transfer functions by writing the denominator of α / δe and q / δe in terms of ωn

and ζ as in Equation 3.21.

s2 + 2ωnζs+ ωn
2 = s2 − (Zα/VTe +Mq) s+ (MqZα/VTe)− (1 + Zq/VTe)Mα

yields

ωn =

√
MqZα −Mα (VTe + Zq)

VTe

ζ = − Mq + Zα/VTe

2
√
(MqZα −Mα (VTe + Zq)) /VTe

(3.21)
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3.4 Verification of Identified Transfer Function in time-domain

It is advised to verify the identified model by returning to the time domain and ex-

citing the system with dissimilar inputs. Dissimilar inputs are the inputs that are not

in the form of those used for identification. As the system was excited by frequency

sweeps for identification purposes, steps and doublets are examples of dissimilar in-

put forms in this case. Therefore, doublet input is fed into the elevator command

channel for verification. Then, the response of identified model and nonlinear model

to the doublet input are compared in the time domain by calculating the time domain

least-squares error, Jrms, between them:

Jrms =

(
1

n

)√√√√ n∑
i=1

(ydata,i − yid,i)
2 (3.22)

Acceptable accuracy for flight mechanics application is suggested in the book [17]

as:

Jrms ≤ 0.5 to 1.0 (3.23)

for fixed-wing aircraft, and the unit of the responses are in degrees or degrees per

second.
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CHAPTER 4

RESULTS

The procedure explained in Chapter 3 is applied to the F-16 nonlinear model de-

scribed in Chapter 2 in this study, and the identification process is repeated at different

trim conditions in the flight envelope. One flight condition in this envelope is selected

for demonstration purposes, and the application on this demo point is presented in this

chapter.

4.1 Results for Demo Flight Condition

The nonlinear F-16 model is trimmed by using the trim algorithm embedded in the

simulation model by [2] with minor enhancements for more precise values. For the

aircraft in steady wings-level flight at 10000 ft altitude with 500 ft/s (0.46 Mach) trim

airspeed VT , the trim values are given in Table 4.1.

Table 4.1: Trim Values of F-16 in steady wings-level flight at 10000 ft altitude with

500 ft/s trim airspeed

Parameter Trim Value

Thrust 2080.9182 lb

Elevator -2.2520 deg

Angle of Attack 3.5973 deg

Aileron 2.3360e-13 deg

Rudder -1.2124e-12 deg

Angle of Sideslip -8.4887e-15 deg
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Before exciting the aircraft at trim, the bare-airframe dynamics to be identified are

observed, and suitability of the conventional short-period approximation in Equation

4.1 with previously stated assumptions had been evaluated. The primary aircraft states

of interest are the angle of attack and pitch rate, while an additional state, elevator

deflection, has to be introduced due to the elevator actuator. Therefore, the state-

space representation with actuator dynamics becomes:
α̇

q̇

δ̇e

 =


Zα/VTe 1 + Zq/VTe Zδe/VTe

Mα Mq Mδe

0 0 −20.2



α

q

δe

+


0

0

20.2


[
δec

]
(4.1)

Once the structure is determined, the sweep input for elevator command is designed

and fed to the aircraft with trim values in Table 4.1. The sweep input equation is

given in Equation 3.3, and the parameters used in the equation are shown in 3.4.

The amplitude of the sweep input is adjusted such that perturbations of α and q are

significant and the responses are in the linear range at the same time, while the rate

saturation at high frequencies is avoided as much as possible. Various time-history

plots of α and q obtained from the same F-16 model in the reference [14] were also

used as guidance while tuning the input amplitude. The elevator command sweep

input and elevator deflection are given in Figure 4.1, together with the rate to see if

they are saturated. In this case, no saturation is observed since the rate is lower than

60 deg/s all the time.

The responses to elevator sweep input are presented in Figure 4.2. It is observed that

the oscillations at all the channels are around the initial trim point as desired.
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Figure 4.1: Elevator Activity

Figure 4.2: Aircraft Response to Sweep Input
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Then, elevator surface deflection, α and q responses are collected, and Gaussian white

noise is introduced to the responses. They are detrended before transforming into the

frequency domain. Data with noise and detrended time histories are given in Figure

4.3.

Figure 4.3: Detrended Time Histories

After detrending, windowing is applied. Determination of window length requires a

trade-off. For flight mechanics applications, longer window lengths are more suitable

to obtain data at lower frequencies. However, having longer windows will reduce the

overall number of windows to be averaged. This will increase the random error in

the estimation of smooth spectrums. Having as many windows as possible is bene-

ficial while calculating the average. The healthy evaluation of this trade-off requires

experience. Therefore, the guidelines about determining window length given by Tis-
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chler and Remple in detail [17] are followed to adjust the window length. Using the

guidance and experimenting with the results, the Hanning window is chosen with

a window length of 18 seconds and 80% overlap, which yields 21 windows overall

for the 90 seconds of the time-history record. As an example, the detrended angle

of attack data, window function and their product are shown in Figure 4.4. Since

the overlap ratio is given in terms of the window length, the time shift between the

windows is 3.6 seconds, corresponding to the 20% of Twin, 18 seconds.

Figure 4.4: Windowed Angle of Attack Response
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This window setting corresponds to a minimum identifiable frequency of 0.3491 rad/s

and a maximum frequency of 314.1593 rad/s. There are 900 data points in this fre-

quency interval for the single-sided spectrum with frequency sampling of 0.3491

rad/s, which is the inverse of window length (1/18 Hz).

FFT algorithm is applied at each window section, and rough spectrums G̃δeδe , G̃αα,

G̃qq, G̃δeα, and G̃δeq are calculated. The rough input auto spectrum for the elevator,

G̃δeδe , and the rough output auto spectrum for the angle of attack, G̃αα, at each win-

dow are presented in Figure 4.5. In the same plot, the smooth auto spectrums Ĝδeδe

and Ĝαα which are obtained by taking the average of the rough spectrums as shown

in Equation 3.13, are also shown.

Figure 4.5: Rough Auto Spectrums G̃δeδe , G̃αα and G̃qq together with Smooth Auto

Spectrums Ĝδeδe , Ĝαα and Ĝqq
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Similarly, the rough and smooth spectrums of for angle of attack channel are given

in Figure 4.6. The cross-spectrums are complex numbers, unlike the auto spectrums.

Thus, the cross-spectrum plot is given in terms of magnitude and phase.

Figure 4.6: Rough Cross-Spectrums G̃δeα together with Smooth Cross-Spectrum Ĝδeα

47



The frequency responses are obtained from the smooth spectrums using the relation

given Equation 3.14, and they are given together with the coherence function, as

shown in Figure 4.7

Figure 4.7: Bode Diagrams of the Frequency Responses and Coherences
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The frequency interval where γ2xy is greater than 0.6 should be selected as already

stated in Section 3.2.5 for transfer function estimation. In addition to this criterion,

there should not be oscillations for the coherence values to be reliable. Based on these

evaluations, the frequency range selected for transfer function estimation is shown in

Table 4.2.

Table 4.2: Frequency Interval with Reliable Coherence

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
0.3491 8.7266

q

δe
0.3491 11.8682

Within the frequency intervals in Table 4.2, transfer function estimations are per-

formed separately for the frequency-responses α/δe and q/δe. Table 4.2 indicates

that 25 data points for α/δe and 34 for q/δe are considered for the estimation. Since

the transfer function estimation is performed separately, α(s)/δe(s) and q(s)/δe(s)

have different denominators, which is physically unacceptable. Therefore, one of

the denominators should be selected as the common denominator. Even though the

number of data points used for the estimation is fewer, selecting the denominator of

α(s)/δe(s) as the common denominator provided more accurate results. Therefore,

the denominator of the identified transfer function α(s)/δe(s) is taken as the common

denominator. The identified transfer functions are:

α

δe
=

−0.1725s− 7.021

s2 + 1.783s+ 2.571
(4.2)

q

δe
=

−7.368s− 5.465

s2 + 1.783s+ 2.571
(4.3)

The match of the identified transfer functions to the frequency-response data shown in

Figure 4.7 is presented in Figure 4.8. The blue line represents the identified transfer

functions in Equations 4.2 and 4.3.The figure shows that the collected frequency-

response data can be represented as second-order transfer functions with high accu-

racy.
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Figure 4.8: Bode Diagrams and Identified Transfer Functions

Having identified the transfer functions, the verification in time domain and param-

eter estimation is the next step normally. However, before that, sharing Bode plot

comparisons of the identified transfer functions and the linearised model is benefi-

cial. The identified transfer functions are multiplied by the actuator transfer function,

20.2/(s+20.2), since the linearisation is done between the input δec to the responses

α and q. Like the trim algorithm, the linearisation algorithm is also retrieved from

Russell [2]. The comparisons for the angle of attack and pitch rate are shown in

Figures 4.9 and 4.10.
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Figure 4.9: Comparison of the Identified Transfer Function and the Linear Model-

Angle of Attack
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Figure 4.10: Comparison of the Identified Transfer Functions and the Linear Model-

Pitch Rate
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In Figure 2.3, the line labelled as Linear Full represents the linear model with all the

states and controls h, θ, V , α, q, δtc , δec , ϕ, ψ, β, p, r, δac , δrc . The Linear Long

line includes the longitudinal states and controls h, θ, V , α, q, δtc , and δec . Linear

SP has only the states α, q and the control δec as in the short-period approximation in

Equation 4.1. Finally, the line "CIFER" represents the output of the CIFER software,

which is obtained by using the same time-history data. The same amount of data

points is used for the same frequency interval for the comparison with CIFER.

As expected, the Linear Full and Linear Long lines are on top of each other since

there is decoupling between longitudinal and lateral dynamics. The difference be-

tween Linear Long and Linear SP shows the accuracy lost by short period approxi-

mation as other dynamics contributing to the longitudinal channel are excluded. Due

to phugoid mode involvement, the discrepancy is high in the lower frequency range

(0.1 rad/s to 0.5 rad/s). After the frequency of 0.5 rad/s, a strong agreement between

Linear Long and Linear SP is observed as expected since the short-period mode be-

comes the dominant mode. The identified transfer function’s behaviour should match

Linear Long behaviour starting from the ωmin up to ωmax. It is also expected from

the identified line to pass a very close Linear SP line throughout the entire frequency

range, including the low-frequency interval. Based on the Bode plots in Figure 2.3,

the behaviour of the identified transfer functions implies a satisfactory identification.

However, accurate linear models may not be available, so the comparison between

identified model and another linear model may be inapplicable in other applications.

The identified model is also compared with the output of CIFER software. While the

identified and CIFER models agree on the angle of attack, there is a slight offset in

the pitch-rate magnitude plot at low frequencies, which is acceptable since CIFER

employs a different fitting algorithm.

Then, the identified transfer functions are verified in the time domain by doublet

inputs, and the Jrms is calculated for both α and q responses, as shown in Equation

3.22. The Jrms threshold for satisfactory identification is specified in Equation 3.23.

The doublet input and the responses with Jrms values are presented in Figure 4.11.

Since the doublet input is given when time is equal to one second, Jrms is calculated

for the time interval of 1 second to 13 seconds.
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Figure 4.11: Identified Model Response to Doublet Input

Low Jrms values in Figure 4.11 and a close match between the nonlinear model indi-

cate that the identified model has excellent accuracy.

Finally, the aerodynamic derivatives are extracted from the identified transfer func-

tions since they are in the form of aerodynamic derivatives. Equating the coefficients

of the identified transfer functions, Equations 4.2 and 4.3, to the related parameters in

Equations 3.16 and 3.17 numerically gives the aerodynamic derivates in the dimen-

sional form:

Zδe = −26.2961 Mδe = −7.3679 Mq = −0.9962

Zα = −119.9073 Mα = −1.9229 Zq = −10.7239
(4.4)

The relationship between dimensional derivatives and short-period natural frequency

and damping ratio was given in Equation 3.21. By inserting the values in Equation

4.4 into this relationship, the natural frequency and damping ratio are found as:

ωn = 1.6036 rad/s ζ = 0.5560 (4.5)

Then, the derivatives are non-dimensionalised, as given in Equation 3.20. The aero-

dynamic derivatives in non-dimensional form become:

CZδe
= −0.8349 Cmδe

= −0.5520 Cmq = −6.5938

CZα = −3.8068 Cmα = −0.1441 CZq = −30.0793
(4.6)
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The derivatives are compared with those of F-16 aircraft given in the NASA Report

[1] and the nonlinear polynomials by Morelli [3]. The derivatives are also calculated

from the linearised model containing only α and q states and were shown with the

label "Linear SP" in Figures 4.9 and 4.10. The only derivatives that can be explicitly

compared are CZq and Cmq . The comparison for these two derivatives is given in Ta-

ble 4.3 at the demo flight condition. The values of CZq are in agreement even though

it is usually dropped from the identification procedure due to high insensitivity, which

indicates that it does not significantly impact aircraft dynamics [43]. Considering that

CZq stands for the change in lift force due to a change in pitch rate, it is reasonable

to exclude it. However, it is kept in the model since its value is identified accurately.

The identified value of Cmq is very accurate compared to its value calculated from

the linearised model. The accuracy of Cmq is vital because if the amount of change

in pitching moment due to change in pitch rate is not accurate, the model’s overall

quality obviously cannot be great.

Table 4.3: Comparison of the Derivatives CZq and Cmq

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -30.0793 -30.2195 -32.0092 -30.7519

Cmq -6.5938 -5.4584 -5.4747 -6.7978

Since the other derivatives are not explicitly available in the database, interpolation

of look-up tables is necessary to compare. The nonlinear polynomial fit is an accu-

rate approximation of the database, and therefore, there is no need to write another

interpolation algorithm. As a result, other derivatives are compared with the values

from the polynomial fit. Considering Equation 2.7, the derivatives CZα and CZδe
can

be driven by taking the partial derivative of the polynomial as follows:

CZα = f1 + 2f2α + 3f3α
2 + 4f4α

3 (4.7)

CZδe
= f5 (4.8)
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Similarly, considering Equation 2.8, the derivatives Cmα and Cmδe
can be driven as:

Cmα = m1 +m3δe + 2m5αδe +m7δe
2 + (xcg,ref − xcg)CZα

(4.9)

Cmδe
= m2 +m3α + 2m4δe +m5α

2 + 3m6δe
2 + 2m7αδe + (xcg,ref − xcg)CZδe

(4.10)

The difference between xcg,ref and xcg is calculated from Table 2.1 as 0.05. Using

these equations, identified derivatives can be compared with the polynomial outputs.

The comparison of the identified derivatives and the values from the polynomials are

given in Table 4.4 for the demo point. For the demo point, the trim angle of attack

is 3.5973◦, and the trim elevator deflection is −2.2520◦, as given in Table 4.1. The

values of the derivatives calculated from the linearised model, the Linear SP Model,

are also included for the comparison.

Table 4.4: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

Derivative Identified Polynomial Linear SP Model

CZα -3.8068 -3.7248 -3.6317

CZδe
-0.8349 -0.4354 -0.4405

Cmα -0.1441 -0.1383 -0.1376

Cmδe
-0.5520 -0.6318 -0.5731

The derivatives CZα , Cmα and Cmδe
have consistent values from different models. On

the other hand, CZδe
could not be matched. This is acceptable because this derivative

shows the change in lift due to elevator deflection. The dynamics of F-16 are also

identified by Knapp et al. [44] using closed-loop data instead of open-loop data as

done in this section. In their results, the derivative Zδe has the highest insensitivity

and Cramer-Rao bound among all the longitudinal state and control derivatives.

The same procedure is applied within the flight envelope given in Figure 4.12 for

seven other trim conditions marked in the plot. The trim values of elevator deflection

and angle of attack at these flight conditions are given in Table 4.5.
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Figure 4.12: Map of Steady Flight Conditions Subjected to System Identification

Table 4.5: Trim Values of Flight Conditions Subjected to System Identification

Event Number Altitude [kft] VT [ft/s] α [deg] δe [deg]

1 5 350 7.3679 -3.3723

2 10 700 1.1264 -1.6612

3 20 550 4.3223 -2.4262

4 25 500 6.8470 -3.2006

5 30 350 17.8036 -4.9558

6 30 550 6.7633 -3.1730

7 35 600 6.8837 -3.2127

In general, it is observed that time-domain match is more successful than aerody-

namic parameter estimation within the envelope.
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4.2 Results at Other Trim Points in the Flight Envelope

The results at various trim points are presented under related subsections, and they

can be commented on as follows:

Event 1: High coherence for a great range of interval is captured, producing almost

an identical match to the Linear SP transfer function. The lowest Jrms belongs to this

event, and such a low time domain cost indicates that the identified model has high

accuracy. On the other hand, the parameter accuracy is not the highest among other

events.

Event 2: Coherence is almost one for even a broader frequency interval than Event

1, and a good match to the linear model is achieved in the Bode plot. This yields an

excellent time-domain match, and parameter accuracy is slightly better.

Event 3: The coherence of this event has similar behaviour to Event 2. On the other

hand, the magnitude plot of Figure 4.20 shows that the accuracy of the identified

transfer functions at lower frequencies is lower than at higher frequencies, but only a

slight increase in Jrms is observed because the response is dominated by short-period

mode occurs at higher frequencies where the match is good. The accuracy level of

the parameter estimation is similar to Event 2.

Event 4: In this event, the coherence of the angle of attack has a local dip around the

natural frequency, but the values are well above the suggested boundary. Bode plots

and time-domain comparison show that identified transfer function is accurate. The

identified derivatives are also very close to the derivatives calculated from Linear SP

model, but it is desired to obtain the key derivatives Cmq and CZα more accurately.

Event 5: The nature of the coherence function is similar to Event 4, but there are

notable offsets at both channels in Bode plots given in Figure 4.26. Therefore, Jrms is

also higher than other events. Event 2 also has similar Jrms values, but it is seen that

the mismatch at moderate frequencies in Bode plots resulted in a considerably high

offset in Cmq , which affects the overall character of the response very significantly.
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Event 6: A great match in the frequency domain is obtained. Even though the time-

domain cost is similar to Event 5, the identified model of this event is more successful

in representing the nonlinear model’s characteristics. This can be related to the higher

accuracy in Cmq , Cmδe
.

Event 7: The match in Bode plots and parameter accuracies are similar to Event 6,

which has a lower time-domain cost. Although having a comparable level of accu-

racies, Event 6 having a lower Jrms value is reasonable because the perturbation of

angle of attack and pitch rate are higher in Event 6.

Overall, the results show that the accuracy of the identified models is satisfactory in

both time and frequency domains, not only for a single flight condition but for various

flight conditions, which indicates that the application in this study is successful.
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4.2.1 Event 1

Bode plots and transfer function estimation range:

Figure 4.13: Frequency-Response and Coherence Plots of Event 1

Table 4.6: Frequency Interval with Reliable Coherence of Event 1

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
0.3491 5.2360

q

δe
0.3491 9.7738
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

−0.07491s− 4.021

s2 + 1.652s+ 1.809
(4.11)

q

δe
=

−4.696s− 2.404

s2 + 1.652s+ 1.809
(4.12)

ωn = 1.3451 rad/s ζ = 0.6141 (4.13)

Bode plot comparison:

Figure 4.14: Bode Plot Comparison of Event 1
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Time-domain comparison:

Figure 4.15: Time-Domain Comparison of Event 1

Comparison of non-dimensional derivatives:

Table 4.7: Comparison of the Derivatives CZq and Cmq of Event 1

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -59.1104 -30.8789 -32.0092 -31.2492

Cmq -9.0413 -5.7199 -5.8376 -7.2252

Table 4.8: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 1

Derivative Identified Polynomial Linear SP Model

CZα -3.1640 -3.4209 -3.6311

CZδe
-0.4431 -0.4354 -0.4417

Cmα -0.1891 -0.1258 -0.1886

Cmδe
-0.6145 -0.6346 -0.5729
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4.2.2 Event 2

Bode plots and transfer function estimation range:

Figure 4.16: Frequency-Response and Coherence Plots of Event 2

Table 4.9: Frequency Interval with Reliable Coherence of Event 2

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
0.6981 9.7738

q

δe
0.6981 11.8682
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

−0.3166s− 14.58

s2 + 2.498s+ 5.03
(4.14)

q

δe
=

−15.1s− 16.93

s2 + 2.498s+ 5.03
(4.15)

ωn = 2.2428 rad/s ζ = 0.5568 (4.16)

Bode plot comparison:

Figure 4.17: Bode Plot Comparison of Event 2
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Time-domain comparison:

Figure 4.18: Time-Domain Comparison of Event 2

Comparison of non-dimensional derivatives:

Table 4.10: Comparison of the Derivatives CZq and Cmq of Event 1

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -26.4965 -29.7253 -31.2398 -29.5140

Cmq -6.1422 -5.4732 -5.2413 -6.7211

Table 4.11: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 1

Derivative Identified Polynomial Linear SP Model

CZα -4.1419 -4.0353 -3.6296

CZδe
-1.0940 -0.4354 -0.4377

Cmα -0.1415 -0.1530 -0.1370

Cmδe
-0.5772 -0.6281 -0.5755
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4.2.3 Event 3

Bode plots and transfer function estimation range:

Figure 4.19: Frequency-Response and Coherence Plots of Event 3

Table 4.12: Frequency Interval with Reliable Coherence of Event 3

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
1.0472 8.3776

q

δe
0.6981 10.4720
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

−0.07491s− 4.021

s2 + 1.652s+ 1.809
(4.17)

q

δe
=

−4.696s− 2.404

s2 + 1.652s+ 1.809
(4.18)

ωn = 1.5771 rad/s ζ = 0.4405 (4.19)

Bode plot comparison:

Figure 4.20: Bode Plot Comparison of Event 3
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Time-domain comparison:

Figure 4.21: Time-Domain Comparison of Event 3

Comparison of non-dimensional derivatives:

Table 4.13: Comparison of the Derivatives CZq and Cmq of Event 3

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -32.4028 -30.3645 -32.0738 -31.1399

Cmq -5.3549 -5.4541 -5.5484 -6.8265

Table 4.14: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 3

Derivative Identified Polynomial Linear SP Model

CZα -4.5562 -3.6517 -3.6344

CZδe
-1.0697 -0.4354 -0.4415

Cmα -0.1822 -0.1350 -0.1379

Cmδe
-0.5560 -0.6325 -0.5729
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4.2.4 Event 4

Bode plots and transfer function estimation range:

Figure 4.22: Frequency-Response and Coherence Plots of Event 4

Table 4.15: Frequency Interval with Reliable Coherence of Event 4

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
1.0472 6.9813

q

δe
0.3491 9.7738
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

−0.05542s− 4.464

s2 + 1.193s+ 1.895
(4.20)

q

δe
=

−4.661s− 2.285

s2 + 1.193s+ 1.895
(4.21)

ωn = 1.3767 rad/s ζ = 0.4334 (4.22)

Bode plot comparison:

Figure 4.23: Bode Plot Comparison of Event 4
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Time-domain comparison:

Figure 4.24: Time-Domain Comparison of Event 4

Comparison of non-dimensional derivatives:

Table 4.16: Comparison of the Derivatives CZq and Cmq of Event 4

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -35.5089 -28.7543 -31.8708 -31.3791

Cmq -7.4596 -6.1337 -5.7924 -7.1602

Table 4.17: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 4

Derivative Identified Polynomial Linear SP Model

CZα -4.0626 -3.4524 -3.6428

CZδe
-0.4419 -0.4354 -0.4430

Cmα -0.2011 -0.1269 -0.1894

Cmδe
-0.5755 -0.6344 -0.5742
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4.2.5 Event 5

Bode plots and transfer function estimation range:

Figure 4.25: Frequency-Response and Coherence Plots of Event 5

Table 4.18: Frequency Interval with Reliable Coherence of Event 5

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
1.0472 6.9813

q

δe
0.3491 10.4720
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

0.03835s− 2.167

s2 + 0.8669s+ 1.137
(4.23)

q

δe
=

−2.243s− 0.6682

s2 + 0.8669s+ 1.137
(4.24)

ωn = 1.0664 rad/s ζ = 0.4065 (4.25)

Bode plot comparison:

Figure 4.26: Bode Plot Comparison of Event 5
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Time-domain comparison:

Figure 4.27: Time-Domain Comparison of Event 5

Comparison of non-dimensional derivatives:

Table 4.19: Comparison of the Derivatives CZq and Cmq of Event 5

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -20.1830 -28.7543 -28.3386 -28.5695

Cmq -10.9375 -6.1337 -6.1304 -7.5795

Table 4.20: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 5

Derivative Identified Polynomial Linear SP Model

CZα -3.8312 -3.2083 -3.5578

CZδe
0.5233 -0.4354 -0.4236

Cmα -0.3007 -0.1306 -0.2732

Cmδe
-0.6770 -0.6224 -0.6222
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4.2.6 Event 6

Bode plots and transfer function estimation range:

Figure 4.28: Frequency-Response and Coherence Plots of Event 6

Table 4.21: Frequency Interval with Reliable Coherence of Event 6

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
1.3963 6.9813

q

δe
0.3491 9.7738
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

−0.01356s− 4.523

s2 + 1.103s+ 1.935
(4.26)

q

δe
=

−4.727s− 2.191

s2 + 1.103s+ 1.935
(4.27)

ωn = 1.3912 rad/s ζ = 0.3966 (4.28)

Bode plot comparison:

Figure 4.29: Bode Plot Comparison of Event 6
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Time-domain comparison:

Figure 4.30: Time-Domain Comparison of Event 6

Comparison of non-dimensional derivatives:

Table 4.22: Comparison of the Derivatives CZq and Cmq of Event 6

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -37.8864 -30.7821 -31.8864 -31.3849

Cmq -7.5425 -5.6510 -5.7850 -7.1463

Table 4.23: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 6

Derivative Identified Polynomial Linear SP Model

CZα -4.0668 -3.4577 -3.6430

CZδe
-0.1178 -0.4354 -0.4429

Cmα -0.2096 -0.1271 -0.1894

Cmδe
-0.5776 -0.6344 -0.5741
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4.2.7 Event 7

Bode plots and transfer function estimation range:

Figure 4.31: Frequency-Response and Coherence Plots of Event 7

Table 4.24: Frequency Interval with Reliable Coherence of Event 7

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
1.3963 8.7266

q

δe
0.3491 10.4720
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Identified transfer functions and natural frequency and damping of the short period

mode:
α

δe
=

0.005474s− 4.612

s2 + 1.037s+ 1.895
(4.29)

q

δe
=

−4.706s− 2.026

s2 + 1.037s+ 1.895
(4.30)

ωn = 1.3766 rad/s ζ = 0.3767 (4.31)

Bode plot comparison:

Figure 4.32: Bode Plot Comparison of Event 7
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Time-domain comparison:

Figure 4.33: Time-Domain Comparison of Event 7

Comparison of non-dimensional derivatives:

Table 4.25: Comparison of the Derivatives CZq and Cmq of Event 7

Derivative Identified F-16 Database Polynomial Linear SP Model

CZq -19.5437 -30.8014 -31.8639 -31.3712

Cmq -7.9969 -5.6647 -5.7850 -7.1651

Table 4.26: Comparison of the Derivatives CZα , CZδe
, Cmα and Cmδe

of Event 7

Derivative Identified Polynomial Linear SP Model

CZα -4.1191 -3.4501 -3.6422

CZδe
0.0526 -0.4354 -0.4429

Cmα -0.2066 -0.1268 -0.1893

Cmδe
-0.5834 -0.6345 -0.5741
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4.3 Case Studies

It is shown that the application of the frequency-response identification procedure

has produced satisfactory results using open-loop data to identify short-period bare-

airframe dynamics. Using the same method, two other cases are investigated. First,

the consequences of neglecting the phugoid mode while identifying the short-period

mode are investigated. The same open-loop data of the demo point is used for the

analysis. The second case is the identification of short-period bare-airframe dynamics

using closed-loop data.

4.3.1 Investigation of the Phugoid Mode Involvement

The goal was to identify the short-period dynamics of the aircraft by second-order

transfer functions. As a result, the short-period and the phugoid mode, which occurs

at lower frequencies, cannot be captured simultaneously by a second-order transfer

function. Since elevator excitation also triggers the phugoid mode, a higher-order fit

to the frequency-response data is attempted to see if a better model can be found when

the phugoid mode is also included.

The transfer functions α/δe and θ/δe that include both modes are given by Roskam

[45] in forth order form as follows:

α

δe
=

Aαs
3 +Bαs

2 + Cαs+Dα

As4 +Bs3 + Cs2 +Ds+ E
(4.32)

θ

δe
=

Aθs
2 +Bθs+ Cθ

As4 +Bs3 + Cs2 +Ds+ E
(4.33)

The transfer function q/δe can be written as s θ/δe. This requires the placement of a

fixed zero at the origin while estimating the transfer function. However, this was not

possible with the employed fitting algorithm, which reduces the accuracy of the fit.

To overcome this problem, the frequency-response of θ is used instead of q and the

estimated transfer function θ/δe is multiplied with s to obtain q/δe such that:

q

δe
=

Aθs
3 +Bθs

2 + Cθs

As4 +Bs3 + Cs2 +Ds+ E
(4.34)
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A good fit to phugoid mode requires data at lower frequencies, which a larger window

size can achieve. Therefore, the window length is readjusted while using the same

time-history data of the demo event. It should be noted that, in this case, a longer

window length is no longer within the recommended bounds, but fitting a fourth-

order transfer function while keeping the window length the same also did not yield a

better model. Based on the Bode plots of the linearised system, it is decided that the

window length should be equal to the recording time to capture the low frequencies

where the phugoid model is observable. On the other hand, the coherence function

becomes useless if one window is used. As already mentioned, coherence is a guide to

evaluating data quality. Thus, the lack of coherence function is a significant drawback

and requires a blind trial and error process while determining the fit frequency range.

Experimenting with different frequency ranges, it is observed that even the best fit

among all trials cannot correctly capture the nature of aircraft at the lower frequencies.

Some good matches are achieved by two unrelated poles, not by complex conjugate

pairs as desired. Although they may have a closer match, such estimations are not

acceptable as they lack the phugoid mode’s physical sense. The final decision about

the most suitable frequency interval for the fitting is given in Table 4.27 for the same

demo point (10 kft trim altitude with 500 ft/s trim airspeed). The frequency-response

data contain 72 and 101 data points in the selected frequency ranges.

Table 4.27: Frequency Interval with Reliable Coherence of the Phugoid Mode Inves-

tigation Case

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
0.1396 5.2360

θ

δe
0.2793 7.3304

The identified transfer functions with corresponding short-period and phugoid natural

frequencies and damping ratios are found as follows:
α

δe
=

−0.47025(s+ 13.09)(s2 + 0.04862s+ 0.0166)

(s2 + 0.00472s+ 0.02004)(s2 + 1.487s+ 2.264)
(4.35)

q

δe
=

−7.9672s(s− 0.7458)(s+ 0.2082)

(s2 + 0.00472s+ 0.02004)(s2 + 1.487s+ 2.264)
(4.36)
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ωn,sp = 1.5047 rad/s ζn,sp = 0.4941 (4.37)

ωn,ph = 0.1416 rad/s ζn,ph = 0.0167 (4.38)

The comparison of the identified transfer functions with the linear model and the

results of CIFER are given in Figure 4.34.

Figure 4.34: Bode Plot Comparison of Phugoid Mode Identification

The match of identified model and linear model is still great at the higher frequencies

where the short-period mode is dominant. However, it is seen that the discrepancy

at lower frequencies is unacceptable, which indicates that the data is insufficient to

make any conclusion on the degree of involvement of the phugoid mode. In addition,

CIFER also could not fit an acceptable model to the data. Since the coherence func-

tion is not available, it is difficult to judge if the amount and quality of data at lower
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frequencies are sufficient to approximate the phugoid mode. In addition, adequate

excitation of the mode is suspicious even though phugoid oscillations were visually

observed in the θ response. Berger et al. [43] also note that phugoid mode identifica-

tion is difficult due to the lack of good data at low frequencies, which require longer

time-history records. This also causes the speed stability derivatives to be insensi-

tive and hard to determine. To sum up, compensating for phugoid involvement in

the response is not possible or credible when short-period identification is performed.

Phugoid, if needed, must be separately identified using proper techniques and with

inputs that can sufficiently excite the mode.

84



4.3.2 Bare-Airframe Identification Using Closed-Loop Data

To this point, bare-airframe identification was performed using open-loop (SCAS-off)

data. Tischler and Remple [17] suggest that open-loop data should be preferred, if

possible, as SCAS supresses low-frequency content, which may lead lower accuracy

at that frequency range. Still, identification of bare-airframe dynamics is possible

when SCAS is active. In this section, a controller is designed using the identified

model of the demo point, and bare-airframe dynamics are identified from closed-loop

data.

4.3.2.1 Controller Design

A classical pitch-rate demand system is designed, and the bare-airframe dynamics

identified from open-loop data are used for the plant dynamics. The controller archi-

tecture is presented in Figure 4.35.

Figure 4.35: Architecture of the Controller

Angle of attack feedback and the pitch rate feedback at the inner loop improve pitch

stiffness and pitch damping by augmenting Cmα and Cmq derivatives, respectively.

The gain Kα is selected as -0.5, which yields poles to be located at ωn = 2.46 rad/s

and ζ = 0.34, where the stability margins are 28 dB and 70 degrees, as shown in Figure

4.36. Then, the gain Kq is taken as -0.5, which sufficiently damps the short-period

poles with a slight increase in the natural frequency. As seen in Figure 4.37, the poles

are now located at ωn = 3.42 rad/s and ζ = 0.99, and the system has an infinite gain

margin, and the phase margin is 96 degrees. The damping might seem unnecessarily

high, but the integrator gain further reduces the damping. Hence, slightly higher

85



damping is targeted in the inner-loop design. The integrator is needed to achieve zero

steady-state error; however, obtaining an ideal steady-state response with sufficient

stability margins is not easy. Closing the inner loops, it is observed that the plant

is challenging due to the left-hand plane zero near the origin. Because the zero is

near the origin, a branch is formed that connects the integrator to the zero. The

mode created along this branch is slow compared to the short period mode and is

apparent in time response. The mode can be negated by increasing the integrator

gain, which, in effect, moves this slow pole closer to zero, but the short period mode

also moves toward the unstable plane. As a result, both damping and stability margins

suffer. An alternative is to replace the integrator with a lag compensator at the cost of

steady-state error. This design can potentially remove the slow mode by placing the

compensator pole closer to the plant’s zero. Therefore, a lag compensator is designed

where the steady-state error of 10% is targeted, and the compensator zero is placed to

provide a phase margin of 60 degrees, giving Klag = 0.7, z = 8 and p = 0.4, as shown

in Figure 4.38.

Figure 4.36: Angle of Attack Inner Loop Closure

86



Figure 4.37: Pitch Rate Inner Loop Closure

Figure 4.38: Lag Compensator Loop Closure
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4.3.2.2 Identification and Results

Trimming the aircraft at demo point flight conditions, sweep input is given as qref

input to the system. It is observed that the input design should be updated for closed-

loop identification as the record length of 90 seconds is found to be too long to keep

the aircraft at initial trim point. The airspeed deviation during the 90-second test was

around 70 m/s, indicating that the aircraft drifts too far apart from the initial trim

conditions. Such a large airspeed deviation is present when pitch rate response is

around 5-10 deg/s. The time histories of this case are given in Figure 4.39.

Figure 4.39: Response of Closed-Loop System to Long Sweep Input
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The drift is much lower if the input amplitude is like a small perturbation but this is

not possible in a real flight-test. As a result, shorter sweep input had to be designed

to keep the deviation of airspeed at tolerable amount while keeping pitch rate output

amplitude sufficiently high as desired. Grauer and Morelli [46] used the same F-16

model and excited the system with multisine inputs for 25 seconds which yielded an

accurate identification. As a response to this work, Tischler et al. [47] also used 25

second of sweep inputs and obtained an excellent model even though the duration of

the input is not optimal. The input and output amplitudes and noise levels are similar

in both works. These works are taken as a base while designing the shorter sweep

input for the closed-loop identification. The record time is limited to 30 seconds,

ωmin is increased to 0.6 rad/s, and ωmax is adjusted to 14 rad/s. The first and last 2

seconds are spent in trim conditions. The pitch rate sweep input qref and resultant

elevator command δec are given in Figure 4.40, together with the outputs δe, q and α.

The rate limit of the actuator is 60 deg/s, and rate saturation is observed at the very

last instants at a tolerable amount. Then, as done in all cases, Gaussian white noise

with standard deviations of 0.1 deg, 0.2 deg and 0.3 deg/s are added to the δe, q and α

outputs. The same noise characteristics are used by Grauer and Morelli [46] for the

outputs of similar amplitudes.
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Figure 4.40: Time-Histories for SCAS-on Case
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The responses of θ, VTAS and nz are also presented in Figure 4.41. The variation in

airspeed is still considerable, and it will corrupt the quality of identification to some

extent but the results showed that it is at a tolerable level.

Figure 4.41: Time-Histories of Other Channels for SCAS-on Case

Collecting the time-histories of δe, α and q, the data is detrended and windowed

as shown previously. The window length is adjusted to 18 seconds as done for the

open-loop data. The number of windows for SCAS-on data was remarkably less than

open-loop data since the record length is three times lower. This increases the random

error because there are fewer points while taking the average. Then, the frequency-

responses and coherences are obtained as shown in Figure 4.42. Results obtained

from open-loop data from the previous section in Figure 4.7 and the results for the

SCAS-on case are plotted together for comparison. Phase plots are very close, but a

constant difference in magnitudes is observed. In addition, coherence is lower at the

low frequencies for the SCAS-on case than in open-loop data in both channels. The

effect is more obvious especially in the pitch-rate coherence plot. There can be two

reasons; first, minimum frequency of the sweep input was higher at the closed-loop

test and second, it is known that SCAS can supress low-frequency content. Moreover,

coherence falls at later frequencies for the SCAS-on case as the maximum frequency

of the input sweep used in the closed-loop test was higher than the open-loop sweep.
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Figure 4.42: Bode Diagrams of the Frequency Responses and Coherences for the

SCAS-on Case
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The frequency range for the transfer function estimation in Table 4.28 is selected

using the coherence plots.

Table 4.28: Frequency Interval with Reliable Coherence for the SCAS-on Case

Frequency Response ωmin [rad/s] ωmax [rad/s]
α

δe
0.3491 11.1701

q

δe
0.6981 12.9154

The identified transfer functions are:

α

δe
=

−0.2309s− 11.04

s2 + 2.469s+ 3.074
(4.39)

q

δe
=

−11.06s− 6.963

s2 + 2.469s+ 3.074
(4.40)

Bode diagrams of identified transfer functions are given together with Bode plots of

linear model and the identified model from CIFER using the same closed-loop time-

history data in Figure 4.43. Identified model very-well captured the phase at lower

frequencies. On the other hand, there is a considerable offset in the mangitude of

angle of attack and at high frequencies of pitch-rate Bode plot.

The time-domain comparison of the nonlinear model, linear model and the identified

model using SCAS-on data is presented in Figure 4.44.

The identified model is acceptable as Jrms values for both channels are under the

suggested values. Nonetheless, Jrms have increased notably compared to the values

of the identified model using SCAS-off data. For the same amount of elevator dis-

turbance, Jrms for the α and q channels were 0.11912 and 0.18556, respectively, as

shown in Figure 4.11. Since number of windows is reduced, the increase in error is

not surprising.
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Figure 4.43: Bode Plot Comparison of SCAS-on Case

Figure 4.44: Time Domain Verification for SCAS-on Case
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The identified values of non-dimensional derivatives are given in Table 4.29, and

those of open-loop tested values, polynomial and Linear SP model, which are already

presented in the previous section.

Table 4.29: Frequency Interval with Reliable Coherence for SCAS-on Case

Derivative Open-Loop Data Polynomial Closed-Loop Data Linear SP

CZq -30.0793 -32.0092 -16.9221 -30.7519

Cmq -6.5938 -5.4747 -11.9090 -6.7978

CZα -3.8068 -3.7248 -3.2420 -3.6317

CZδe
-0.8349 -0.4354 -1.1173 -0.4405

Cmα -0.1441 -0.1383 -0.1457 -0.1376

Cmδe
-0.5520 -0.6318 -0.8287 -0.5731

The accuracy of all the aerodynamic derivatives of the model identified from SCAS-

on data seemed to be lower than the identified model using the open-loop data. The

difference is very high, particularly for the pitch-rate damping derivative, which can

be related to the constant offset in the magnitude at the pitch-rate Bode plot at mid-

frequencies. Previosuly in Equation 4.5, the natural frequency and damping were

calculated as 1.6063 rad/s and 0.5560, respectively, and they increased to 1.7533 rad/s

and 0.7042. The jump in identified damping ratio is mainly due to the misprediction

of the Mq derivative.

The overall performance of the identified model using SCAS-on data is acceptable,

but its accuracy is observed to be lower than the identified model using open-loop

data.
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CHAPTER 5

CONCLUSIONS

The objective of this study was to apply frequency domain system identification tech-

niques, particularly on the F-16 aircraft. Short-period mode identification by using

frequency-response estimates of δe to α and q of F-16 is performed in this study.

Flight-test data is collected from the nonlinear simulation of the aircraft and post-

processed. Post-processing applications include detrending and windowing of the

time domain data. Then, the processed time domain data is converted to the frequency

domain using Fourier transformation by the FFT algorithm. The average of the rough

spectrums is calculated across multiple windows, and smooth spectral estimates and

frequency responses are obtained. The coherence function is used to determine the

proper frequency range, where transfer functions will be estimated for the frequency

responses. After performing the transfer function fit, the identified models are tested

in the time domain.

Additionally, non-dimensional aerodynamic derivatives from the identified transfer

functions are calculated. The open-loop identification results showed that the identi-

fied short-period model successfully reflects the nonlinear model’s behaviour through-

out the envelope. On the other hand, although great results are obtained in the time

domain, aerodynamic parameter estimation is not as successful as in the time domain.

It is also shown that quantifying phugoid involvement in time histories is difficult as

requiring more data at lower frequencies, which was not possible with the current

data. Bare-airframe dynamics are also identified from closed-loop data with great ac-

curacy, although it is slightly less accurate than the model identified from open-loop

data.
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Although accurate results are obtained in this study, enhancements from several as-

pects are still possible. The main improvements can be the prevention of the aircraft

departing from the initial trim condition and the development of a logic that can be

used as a guide to predict the parameter estimation accuracy. Even though the time-

domain comparison is performed to measure the accuracy of the identified model,

another check for the parameter accuracy can be beneficial. Other improvements

are also possible. For instance, the Fourier transform can be realised by chirp z-

transform, which is expected to increase the frequency-response estimation accuracy

further. There can be improvements in the windowing as well. The number of in-

dependent windows may increase, and a weighting function to the windows may be

introduced while calculating the smooth frequency-response estimates. In addition,

the transfer function fitting algorithm may be improved such that certain coefficients

can be fixed or user-bounded.
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